11. Container With Most Water
Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container and n is at least 2.
The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example:
Input: [1,8,6,2,5,4,8,3,7]
Output: 49
思路
题目的意思就是计算两条线所围的面积,面积等于长乘以宽,要想让总面积变大,就要让二者尽可能的都大。所以可以从最长的宽开始计算,也就是一个数组的首尾,然后不断向里面挪,直到二者相遇,将过程中最大的面积输出即可。
挪动的策略就是,二者比较,谁短谁挪。
python3
class Solution:
def maxArea(self, height):
"""
:type height: List[int]
:rtype: int
"""
left_idx, right_idx = 0, len(height) - 1
area = 0
while left_idx < right_idx:
cur_area = min(height[left_idx], height[right_idx]) * (right_idx - left_idx)
area = max(area, cur_area)
if height[left_idx] < height[right_idx]:
left_idx +=1
else:
right_idx -=1
return area
c++11
class Solution {
public:
int maxArea(vector<int>& height) {
int area{0};
auto left_idx = height.begin();
auto right_idx = std::prev(height.end());
while(left_idx < right_idx) {
auto cur_area = std::min(*left_idx, *right_idx) * (right_idx - left_idx);
area = std::max(area, static_cast<int>(cur_area));
if(*left_idx < *right_idx)
left_idx++;
else
right_idx--;
}
return area;
}
};