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50 Choosing pipeline components: Data 

availability 
 

When building a non-end-to-end pipeline system, what are good candidates for the 

components of the pipeline? How you design the pipeline will greatly impact the overall 

system’s performance. One important factor is whether you can easily collect data to train 

each of the components.  

 

For example, consider this autonomous driving architecture: 

 

 

 

 

 

You can use machine learning to detect cars and pedestrians. Further, it is not hard to obtain 

data for these: There are numerous computer vision datasets with large numbers of labeled 

cars and pedestrians. You can also use crowdsourcing (such as Amazon Mechanical Turk) to 

obtain even larger datasets. It is thus relatively easy to obtain training data to build a car 

detector and a pedestrian detector.  

In contrast, consider a pure end-to-end approach:  

 

 

 

To train this system, we would need a large dataset of (Image, Steering Direction) pairs. It is 

very time-consuming and expensive to have people drive cars around and record their 

steering direction to collect such data. You need a fleet of specially-instrumented cars, and a 

huge amount of driving to cover a wide range of possible scenarios. This makes an 

end-to-end system difficult to train. It is much easier to obtain a large dataset of labeled car 

or pedestrian images.  

More generally, if there is a lot of data available for training “intermediate modules” of a 

pipeline (such as a car detector or a pedestrian detector), then you might consider using a 
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pipeline with multiple stages. This structure could be superior because you could use all that 

available data to train the intermediate modules.  

Until more end-to-end data becomes available, I believe the non-end-to-end approach is 

significantly more promising for autonomous driving: Its architecture better matches the 

availability of data.  
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51 Choosing pipeline components: Task 

simplicity  
 

Other than data availability, you should also consider a second factor when picking 

components of a pipeline: How simple are the tasks solved by the individual components? 

You should try to choose pipeline components that are individually easy to build or learn. 

But what does it mean for a component to be “easy” to learn?  

 

Consider these machine learning tasks, listed in order of increasing difficulty:  

1. Classifying whether an image is overexposed (like the example above)  

2. Classifying whether an image was taken indoor or outdoor 

3. Classifying whether an image contains a cat 

4. Classifying whether an image contains a cat with both black and white fur 

5. Classifying whether an image contains a Siamese cat (a particular breed of cat) 

 

Each of these is a binary image classification task: You have to input an image, and output 

either 0 or 1. But the tasks earlier in the list seem much “easier” for a neural network to 

learn. You will be able to learn the easier tasks with fewer training examples.  

Machine learning does not yet have a good formal definition of what makes a task easy or 

hard.  With the rise of deep learning and multi-layered neural networks, we sometimes say a 
1

task is “easy” if it can be carried out with fewer computation steps (corresponding to a 

shallow neural network), and “hard” if it requires more computation steps (requiring a 

deeper neural network). But these are informal definitions.  

1Information theory has the concept of “Kolmogorov Complexity”, which says that the complexity of a learned function is 
the length of the shortest computer program that can produce that function. However, this theoretical concept has found 
few practical applications in AI. See also: https://en.wikipedia.org/wiki/Kolmogorov_complexity 
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If you are able to take a complex task, and break it down into simpler sub-tasks, then by 

coding in the steps of the sub-tasks explicitly, you are giving the algorithm prior knowledge 

that can help it learn a task more efficiently.  

 

Suppose you are building a Siamese cat detector. This is the pure end-to-end architecture: 

 

In contrast, you can alternatively use a pipeline with two steps:  

 

The first step (cat detector) detects all the cats in the image.  
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The second step then passes cropped images of each of the detected cats (one at a time) to a 

cat species classifier, and finally outputs 1 if any of the cats detected is a Siamese cat. 

 

Compared to training a purely end-to-end classifier using just labels 0/1, each of the two 

components in the pipeline--the cat detector and the cat breed classifier--seem much easier 

to learn and will require significantly less data.  
2

 

2 If you are familiar with practical object detection algorithms, you will recognize that they do not learn just with 0/1 
image labels, but are instead trained with bounding boxes provided as part of the training data. A discussion of them is 
beyond the scope of this chapter. See the Deep Learning specialization on Coursera (http://deeplearning.ai) if you would 
like to learn more about such algorithms.  
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As one final example, let’s revisit the autonomous driving pipeline.  

 

 
 
 
 
 
 

By using this pipeline, you are telling the algorithm that there are 3 key steps to driving: (1) 

Detect other cars, (2) Detect pedestrians, and (3) Plan a path for your car. Further, each of 

these is a relatively simpler function--and can thus be learned with less data--than the 

purely end-to-end approach. 

 

In summary, when deciding what should be the components of a pipeline, try to build a 

pipeline where each component is a relatively “simple” function that can therefore be learned 

from only a modest amount of data.  
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52 Directly learning rich outputs 
 

An image classification algorithm will input an image x, and output an integer indicating the 

object category. Can an algorithm instead output an entire sentence describing the image?  

For example:  

 

 

x =  

 

 

y = “A yellow bus driving down a road with 

green trees and green grass in the 

background.” 

Traditional applications of supervised learning learned a function h:X→Y, where the output 

y was usually an integer or a real number. For example:  

Problem  X  Y 

Spam classification  Email   Spam/Not spam (0/1) 

Image recognition  Image  Integer label 

Housing price prediction  Features of house  Price in dollars 

Product recommendation  Product & user features  Chance of purchase 

 

One of the most exciting developments in end-to-end deep learning is that it is letting us 

directly learn y that are much more complex than a number. In the image-captioning 

example above, you can have a neural network input an image (x) and directly output a 

caption (y).  
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Here are more examples: 

Problem  X  Y  Example Citation 

Image captioning  Image  Text  Mao et al., 2014 

Machine translation  English text  French text  Suskever et al., 2014 

Question answering  (Text,Question) pair   Answer text  Bordes et al., 2015 

Speech recognition  Audio  Transcription  Hannun et al., 2015 

TTS  Text features  Audio  van der Oord et al., 2016 

 

This is an accelerating trend in deep learning: When you have the right (input,output) 

labeled pairs, you can sometimes learn end-to-end even when the output is a sentence, an 

image, audio, or other outputs that are richer than a single number.  
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