Machine Learning Yearning

目 录

简介

NG的手稿,已出全。我这里边学习边翻译,随手记录之,加深学习印象,仅供学习交流。

官网:http://www.mlyearning.org/

更好阅读体验,移步gitbook:https://xiaqunfeng.gitbooks.io/machine-learning-yearning/content/

声明:本rep是自己学习过程的一个记录,仅用于学习目的。

更新记录:

  • update 2018.04.25:NG终于出15~19章的手稿啦,等的好辛苦(DONE)

Tips:在原先的12章和13章之间新增一个章节 13 Build your first system quickly, then iterate,原先的chapter13变为14,chapter14变为15

  • update 2018.05.02:手稿 20~22 章已出(DONE)
  • update 2018.05.09:手稿 23~27 章已出(DONE)
  • update 2018.05.16:手稿 28~30 章已出(DONE)
  • update 2018.05.23:手稿 31~32 章已出(DONE)
  • update 2018.05.30:手稿 33~35 章已出(DONE)
  • update 2018.06.06:手稿 36~39 章已出(DONE)
  • update 2018.06.13:手稿 40~43 章已出(DONE)
  • update 2018.06.20:手稿 44~46 章已出(DONE)
  • update 2018.06.27:手稿 47~49 章已出(DONE)
  • update 2018.07.04:手稿 50~52 章已出(DONE)
  • update 2018.09.29:手稿 53~58 章已出(DONE)

业余时间翻译,水平有限,如有不妥或错误之处,欢迎不吝赐教。

目的

这本书的目的是教你如何做组织一个机器学习项目所需的大量的决定。 你将学习:

  • 如何建立你的开发和测试集

  • 基本错误分析

  • 如何使用偏差和方差来决定该做什么

  • 学习曲线

  • 将学习算法与人类水平的表现进行比较

  • 调试推理算法

  • 什么时候应该和不应该使用端到端的深度学习

  • 按步进行错误分析

翻译章节

Chapter 1、Why Machine Learning Strategy

Chapter 2、How to use this book to help your team

Chapter 3、Prerequisites and Notation

Chapter 4、Scale drives machine learning progress

Setting up development and test sets

Chapter 5、Your development and test sets

Chapter 6、Your dev and test sets should come from the same distribution

Chapter 7、How large do the dev/test sets need to be?

Chapter 8、Establish a single-number evaluation metric for your team to optimize

Chapter 9、Optimizingandsatisficingmetrics

Chapter 10、Having a dev set and metric speeds up iterations

Chapter 11、When to change dev/test sets and metrics

Chapter 12、Takeaways: Setting up development and test sets

Basic Error Analysis

Chapter 13、Build your first system quickly, then iterate

Chapter 14、Error analysis: Look at dev set examples to evaluate ideas

Chapter 15、Evaluate multiple ideas in parallel during error analysis

Chapter 16、Cleaning up mislabeled dev and test set examples

Chapter 17、 If you have a large dev set, split it into two subsets, only one of which you look at

Chapter 18、How big should the Eyeball and Blackbox dev sets be?

Chapter 19、Takeaways: Basic error analysis

Bias and Variance

Chapter 20、Bias and Variance: The two big sources of error

Chapter 21、Examples of Bias and Variance

Chapter 22、Comparing to the optimal error rate

Chapter 23、Addressing Bias and Variance

Chapter 24、Bias vs. Variance tradeoff

Chapter 25、Techniques for reducing avoidable bias

Chapter 26、Error analysis on the training set

Chapter 27、Techniques for reducing variance

Learning curves

Chapter 28、Diagnosing bias and variance: Learning curves

Chapter 29、Plotting training error

Chapter 30、Interpreting learning curves: High bias

Chapter 31、Interpreting learning curves: Other cases

Chapter 32、Plotting learning curves

Comparing to human-level performance

Chapter 33、Why we compare to human-level performance

Chapter 34、How to define human-level performance

Chapter 35、Surpassing human-level performance

Training and testing on different distributions

Chapter 36、When you should train and test on different distributions

Chapter 37、How to decide whether to use all your data

Chapter 38、How to decide whether to include inconsistent data

Chapter 39、Weighting data

Chapter 40、Generalizing from the training set to the dev set

Chapter 41、Identifying Bias, Variance, and Data Mismatch Errors

Chapter 42、Addressing data mismatch

Chapter 43、Artificial data synthesis

Debugging inference algorithms

Chapter 44、The Optimization Verification test

Chapter 45、General form of Optimization Verification test

Chapter 46、Reinforcement learning example

End-to-end deep learning

Chapter 47、The rise of end-to-end learning

Chapter 48、More end-to-end learning examples

Chapter 49、Pros and cons of end-to-end learning

Chapter 50、Choosing pipeline components: Data availability

Chapter 51、Choosing pipeline components: Task simplicity

Chapter 52、Directly learning rich outputs

Error analysis by parts

Chapter 53、 Error analysis by parts

Chapter 54、Attributing error to one part

Chapter 55、General case of error attribution

Chapter 56、Error analysis by parts and comparison to human-level performance

Chapter 57、Spotting a flawed ML pipeline

Conclusion

Chapter 58、Building a superhero team - Get your teammates to read this

英文原文

详见 draft 目录:

01-14章:Ng_MLY01-01-14.pdf

15-19章:Ng_MLY02-15-19.pdf

20-22章:Ng_MLY03-20-22.pdf

23-27章:Ng_MLY04-23-27.pdf

28-30章:Ng_MLY05-28-30.pdf

31-32章:Ng_MLY06-31-32.pdf

33-35章:Ng_MLY07-33-35.pdf

36-39章:Ng_MLY08-36-39.pdf

40-43章:Ng_MLY09-40-43.pdf

44-46章:NG_MLY10-44-46.pdf

47-49章:NG_MLY11-47-49.pdf

50-52章:Ng_MLY12-50-52.pdf

53-58章:Ng_MLY13-53-58.pdf

results matching ""

    No results matching ""